
Axiom

Security Assessment

October 12, 2023

Prepared for:

Yi Sun

Axiom

Prepared by:

Allen Roh and Mohit Sharma

Zellic Inc.

Contents

About Zellic 3

About KALOS 4

1 Executive Summary 5

1.1 Goals of the Assessment . 5

1.2 Non-goals and Limitations . 5

1.3 Results . 5

2 Introduction 7

2.1 About Axiom . 7

2.2 Methodology . 7

2.3 Scope . 8

2.4 Project Overview . 9

2.5 Project Timeline . 9

3 Detailed Findings 10

3.1 The verify_field_hash function has incorrect Merkle proof–
verification logic . 10

3.2 Insufficient maximum depth for the MPT proofs leads to a potential
DOS attack . 12

3.3 Function new_from_bytes in src/ssz/types.rs is incorrect 14

3.4 The node type of terminal node in MPT is not range checked to be a bit 17

3.5 No leading zero check in rlp(idx) leads to soundness bug in transac-
tion circuit . 19

3.6 Underconstrained circuit in length proofs for transaction circuit 21

4 Discussion 23

Zellic 1 Axiom

4.1 Analysis of the storage circuit . 23

4.2 Analysis of the transaction circuit . 24

4.3 Analysis of the receipt circuit . 26

4.4 Analysis of the Solidity circuit . 27

4.5 Analysis of the block header circuit . 28

4.6 Analysis of the SSZ circuit . 30

4.7 Analysis of the MPT circuit . 32

4.8 Analysis of the RLP circuit . 33

4.9 Analysis of the RLC circuit . 33

4.10 Analysis of the keccak circuit . 34

5 Audit Results 36

5.1 Disclaimer . 36

Zellic 2 Axiom

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please contact us
at hello@zellic.io.

Zellic 3 Axiom

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

About KALOS

KALOS is a flagship service of HAECHI LABS, providing blockchainwallets and security
audits since 2018.

We bring together the best experts to make the Web3 space safer for everyone.
Our team consists of security researchers with various expertise — smart contract,
blockchain, cryptography, web security, reverse engineering, and binary analysis.
Their skills have lead tomultiple strong performances in reputable cybersecurity com-
petitions over the past few years.

Over the course of the last five years, we have secured nearly $60B crypto assets
over 400 projects of various types such as mainnets, DeFi protocols, NFT services,
P2E games, and bridges. Our expertise was recognized by the Samsung Electronics
Startup Incubation Program, and we have also received technology grants from the
Ethereum Foundation and the Ethereum Community Fund.

Our audit process is customer focused — our security researchers communicate with
the team on a regular basis, sharing key vulnerabilities as soon as they are discovered.
With our expertise and our personalized approach for each client, we believe that our
security audits will be a great addition for your project.

Our website with our profiles and recent research is at kalos.xyz. If you are interested
in getting an audit with us, please send us an email at audit@kalos.xyz.

Zellic 4 Axiom

https://kalos.xyz
audit@kalos.xyz

1 Executive Summary

Zellic and KALOS conducted a security assessment for Axiom from September 4th to
October 2nd, 2023. During this engagement, we reviewed Axiom’s code for security
vulnerabilities, design issues, and general weaknesses in security posture.

1.1 Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to an-
swer. These questions are agreed upon through close communication between Zellic,
KALOS, and the client. In this assessment, we sought to answer the following ques-
tions:

• Do the circuits follow the appropriate specification?
• Are the circuits constrained properly?
• Are the witness assignments done correctly?

1.2 Non-goals and Limitations

Wedid not assess the following areas thatwere outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations
in the coverage an assessment can provide.

1.3 Results

During our assessment on the scoped Axiom circuits, we discovered six findings. Two
critical issues were found. Two were of high impact, one was of medium impact, and
the remaining finding was informational in nature.

Additionally, we recorded our notes and observations from the assessment for Ax-
iom’s benefit in the Discussion section (4) at the end of the document.

Zellic 5 Axiom

Breakdown of Finding Impacts

Impact Level Count

Critical 2

High 2

Medium 1

Low 0

Informational 1

Critical

High
Medium

Info

Zellic 6 Axiom

2 Introduction

2.1 About Axiom

Axiom is a ZK coprocessor for Ethereum that provides smart contracts trustless access
to all on-chain data and arbitrary expressive compute over it. Developers can make
queries into Axiom and trustlessly use the ZK-verified results on chain in their smart
contracts.

2.2 Methodology

During a security assessment, Zellic and KALOSwork through various testingmethods
along with a manual review. In some cases for a ZKP circuit, we also provide some
proofs for soundness. The majority of the time is spent on a manual review of the
entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, we focus pri-
marily on the following classes of security and reliability issues:

Underconstrained circuits. The most common type of vulnerability in a ZKP circuit
is not adding sufficient constraints to the system. This leads to proofs generated
with incorrect witnesses in terms of the specification of the project being accepted
by the ZKP verifier. We manually check that the set of constraints satisfies sound-
ness, enough to remove all such possibilities, and in some cases, provide a proof of
the fact.

Overconstrained circuits.While rare, it is possible that a circuit is overconstrained. In
this case, appropriately assigning witness will become impossible, leading to a vul-
nerability. To prevent this, wemanually check that the constraint system is set upwith
completeness so that the proofs generated with the correct set of witnesses indeed
pass the ZKP verification.

Missing range checks. This is a popular type of an underconstrained circuit vulnera-
bility. Due to the usage of field arithmetic, overflow checks and range checks serve a
huge purpose to build applications that work over the integers. We manually check
the code for such missing checks, and in certain cases, provide a proof that the given
set of range checks are sufficient to constrain the circuit up to specification.

Cryptography. ZKP technology and their applications are based on various aspects of
cryptography. Wemanually review the cryptography usage of the project and exam-
ine the relevant studies and standards for any inconsistencies or vulnerabilities.

Zellic 7 Axiom

Code maturity. We look for potential improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards.

For each finding, Zellic and KALOS assign it an impact rating based on its severity and
likelihood. There is no hard-and-fast formula for calculating a finding’s impact. In-
stead, we assign it on a case-by-case basis based on our judgment and experience.
Both the severity and likelihood of an issue affect its impact. For instance, a highly
severe issue’s impact may be attenuated by a low likelihood. We assign the following
impact ratings (ordered by importance): Critical, High, Medium, Low, and Informa-
tional.

We organize its reports such that the most important findings come first in the doc-
ument, rather than being strictly ordered on impact alone. Thus, we may sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on various soft factors, like our clients’ threat models,
their business needs, and so on. We aim to provide useful and actionable advice to
our partners considering their long-term goals, rather than a simple list of security
issues at present.

2.3 Scope

The engagement involved a review of the following targets:

Axiom Circuits

Repositories https://github.com/axiom-crypto/axiom-eth-working

https://github.com/axiom-crypto/axiom-eth-
working/tree/develop/axiom-eth/src/mpt

https://github.com/axiom-crypto/axiom-eth-working/pull/57

https://github.com/axiom-crypto/axiom-eth-working/pull/33

https://github.com/axiom-crypto/axiom-eth-
working/tree/feat/sha-ssz-proof/axiom-eth/src/ssz

Versions axiom-eth-working: 91a983d64407e16d24825be990155b701a722cdc

axiom-eth-working: 86b177157a05cb9c7e04a40c5132adf9decf0d0d

axiom-eth-working: 80cc96983eec2aa22ffefaeb91ff263439f22ea9

axiom-eth-working: 6fcbcfe782f081c04d1fe4676e1203bc04431cf4

Zellic 8 Axiom

https://github.com/axiom-crypto/axiom-eth-working
https://github.com/axiom-crypto/axiom-eth-working/tree/develop/axiom-eth/src/mpt
https://github.com/axiom-crypto/axiom-eth-working/tree/develop/axiom-eth/src/mpt
https://github.com/axiom-crypto/axiom-eth-working/pull/57
https://github.com/axiom-crypto/axiom-eth-working/pull/33
https://github.com/axiom-crypto/axiom-eth-working/tree/feat/sha-ssz-proof/axiom-eth/src/ssz
https://github.com/axiom-crypto/axiom-eth-working/tree/feat/sha-ssz-proof/axiom-eth/src/ssz

axiom-eth-working: e2406a0ef61781fd8e15d8302eb3af4b662c44e2

Program • axiom-eth/src/*

Types Rust, Solidity

Platforms Halo2, EVM

2.4 Project Overview

Zellic and KALOS were contracted to perform a security assessment with two con-
sultants for a total of five person-weeks. The assessment was conducted over the
course of three calendar weeks.

Contact Information

The following project manager was associated with the engagement:

Jasraj Bedi, Engagement Manager
jazzy@zellic.io

The following consultants were engaged to conduct the assessment:

Allen Roh, Engineer
allen@kalos.xyz

Mohit Sharma, Engineer
mohit@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

September 4, 2023 Kick-off

September 4, 2023 Start of primary review period

October 4, 2023 End of primary review period

Zellic 9 Axiom

mailto:jazzy@zellic.io
mailto:allen@kalos.xyz
mailto:mohit@zellic.io

3 Detailed Findings

3.1 The verify_field_hash function has incorrectMerkle proof–
verification logic

• Target: src/ssz/mod.rs
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

The verify_field_hash function, which aims to verify the value of a field at a certain
position from an SSZ structure, takes an SSZ inclusion proof along with the maximum
number of fields and the field index, then shows that the claimed value is included at
the specified index.

The index can be proved by matching its bit representation with the direction values
provided in the Merkle proof.

However, the given code matches the direction values with the byte representation
of the index, instead of the bit representation. This is shown below.

pub fn verify_field_hash(
&self,
ctx: &mut Context<F>,
field_num: AssignedValue<F>,
max_fields: usize,
proof: SSZInputAssigned<F>,

) -> SSZInclusionWitness<F> {
assert!(max_fields > 0);
let log_max_fields = log2(max_fields);
self.range().check_less_than_safe(ctx, field_num, max_fields

as u64);
let field_num_bytes =

uint_to_bytes_be(ctx, self.range(), &field_num,
log_max_fields as usize); /) byte representation

let witness = self.verify_inclusion_proof(ctx, proof);
let bad_depth = self.range().is_less_than_safe(ctx,

witness.depth, log_max_fields as u64);
self.gate().assert_is_const(ctx, &bad_depth, &F:)from(0));

Zellic 10 Axiom

for i in 1.)(log_max_fields + 1) {
let index = self.gate().sub(ctx, witness.depth,

Constant(F:)from(i as u64)));
let dir_bit = self.gate().select_from_idx(ctx,

witness.directions.clone(), index);
ctx.constrain_equal(&dir_bit, field_num_bytes[(log_max_fields

- i) as usize].as_ref());
}
witness

}

Impact

As the directions are constrained to be boolean in the verify_inclusion_proof, any
field_num value that has nonboolean value in the byte representation cannot be used
in the verify_field_hash function. This implies that the circuit does not satisfy com-
pleteness.

Recommendations

We recommend using the bit representation to compare with the direction values.

Remediation

This issue has been acknowledged by Axiom, and a fix was implemented in commit
6e2f7454.

Zellic 11 Axiom

https://github.com/axiom-crypto/axiom-eth-working/pull/83/commits/6e2f745481e7993accda06f0c4f2f71cf10bff28

3.2 Insufficient maximum depth for the MPT proofs leads to a
potential DOS attack

• Target: src/storage/mod.rs
• Category: Coding Mistakes
• Likelihood: High

• Severity: High
• Impact: High

Description

As seen in the src/storage/mod.rs code, the maximum depth for the account proof is
set to 10. This value is sent over to the MPT circuits as the max_depth value.

pub const ACCOUNT_PROOF_MAX_DEPTH: usize = 10;
pub const STORAGE_PROOF_MAX_DEPTH: usize = 9;

However, given a target address, it is feasible to compute private keys corresponding
to addresses that make the MPT inclusion proof for the target address have depth
larger than 10. For example, simply working with the first 11 hex values, one can run a
parallelizable O(2^44) attack to find the relevant private keys.

Impact

All storage proofs or account proofs relevant to the targeted address will fail, leading
to a denial-of-service–like impact.

Recommendations

We recommend increasing the maximum depth of the account proofs and storage
proofs accordingly.

Remediation

Axiom acknowledged this finding and provided the below response.

1. We have moved these constants to axiom-query in the second audit:
axiom-query

2. In a subsequent PR,we addedmax_trie_depth to core_params for Account,
Storage, Transaction, and Receipt subquery circuits, so they are accurately
recorded as circuit configuration parameters.

Zellic 12 Axiom

https://github.com/axiom-crypto/axiom-eth-working/blob/v2-zellic-audit/axiom-query/src/global_constants.rs

In production, we will use the following max_trie_depth’s:

• Account(state) trie: 14

• Storage trie: 13

• Transaction trie: 6

• Receipt trie: 6

For account and storage, thesemax depths were determined by running an anal-
ysis on a Geth full node: https://hackmd.io/@axiom/BJBledudT.

Zellic 13 Axiom

https://hackmd.io/@axiom/BJBledudT

3.3 Function new_from_bytes in src/ssz/types.rs is incorrect

• Target: src/ssz/types.rs
• Category: Coding Mistakes
• Likelihood: N/A

• Severity: Informational
• Impact: Informational

Description

The new_from_bytes function in SszBasicTypeList<F> takes a vector of AssignedBytes<
F> and the len to create a new SszBasicTypeList<F>. To do so, it computes the pre_len
array, which represents whether or not the current index is less than the len value.

The point of computing this array, as shown in other functions such as new_mask, is
that the value can be multiplied by the pre_len array to force all values at index no
less than len to be equal to zero. This is shown in the code below.

pub fn new_mask(
ctx: &mut Context<F>,
range: &RangeChip<F>,
values: Vec<SszBasicType<F>),
int_bit_size: usize,
len: AssignedValue<F>,

) -> Self {
/) ...))
for j in 0.)values.len() {

let mut new_bytes = Vec:)new();
for i in 0.)int_byte_size {

let val = range.gate().mul(ctx, values[j].value()[i],
pre_len[j]);

new_bytes.push(val);
}
let new_basic = SszBasicType:)new(ctx, range, new_bytes,

int_bit_size);
new_list.push(new_basic);

}
/) ...))

}

Here, we see that all bytes in the values[j].value() are multiplied with pre_len[j]
correctly. However, in the new_from_bytes function, this is handled incorrectly.

Zellic 14 Axiom

pub fn new_from_bytes(
ctx: &mut Context<F>,
range: &RangeChip<F>,
vals: Vec<AssignedBytes<F>),
int_bit_size: usize,
len: AssignedValue<F>,

) -> Self {
/) ...))
for value in vals {

let mut new_value = Vec:)new();
for i in 0.)32 {

let new_val = range.gate.mul(ctx, value[i], pre_len[i]);
new_value.push(new_val);

}
let basic_type = SszBasicType:)new(ctx, range, new_value,

int_bit_size);
values.push(basic_type);

}
/) ...))

}

Here, we see that value[i], which is the ith byte of a single AssignedBytes<F> instance,
is multiplied with the pre_len[i], which is incorrect.

We also note that the pre_len array is initialized with the length values.len(), which
is zero.

pub fn new_from_bytes(
ctx: &mut Context<F>,
range: &RangeChip<F>,
vals: Vec<AssignedBytes<F>),
int_bit_size: usize,
len: AssignedValue<F>,

) -> Self {
/) ...))
let mut values = Vec:)new();
/) safety constraints?
let len_minus_one = range.gate.dec(ctx, len);
let len_minus_one_indicator = range.gate.idx_to_indicator(ctx,
len_minus_one, vals.len());
let zero = ctx.load_zero();

Zellic 15 Axiom

let mut pre_len = vec![zero; values.len()];
/) ...))

}

To the best of our knowledge, this function is not used anywhere.

Recommendations

We recommend removing the new_from_bytes function.

Remediation

This issue has been acknowledged by Axiom, and a fix was implemented in commit
54dabf29.

Zellic 16 Axiom

https://github.com/axiom-crypto/axiom-eth-working/pull/94/commits/54dabf290697ca5cab398d8b0c19f07169ef1ae7

3.4 The node type of terminal node inMPT is not range checked
to be a bit

• Target: src/mpt/mod.rs
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

All inputs to the MPT inclusion/exclusion proof circuit are range checked in parse_mp
t_inclusion_phase0 to ensure there is no undefined behavior in functions that expect
input witness values to be bytes or boolean values. The node_type for every node in
proof is range checked to be a single bit; however, this check is missed for proof.lea
f.node_type.

for bit in iter:)once(&proof.slot_is_empty)
.chain(proof.nodes.iter().map(|node| &node.node_type))
.chain(proof.key_frag.iter().map(|frag| &frag.is_odd))

{
self.gate().assert_bit(ctx, *bit);

}

Impact

This missing range check can lead to undefined behavior as proof.leaf.node_type is
passed into functions that assume the corresponding argument to be boolean, such
as in parse_terminal_node_phase0.

self.gate().select(ctx, node_byte, dummy_ext_byte, leaf_bytes.node_type)
self.gate().select(ctx, dummy_branch_byte, node_byte,

leaf_bytes.node_type)

Recommendations

Assert proof.leaf.node_type to be boolean.

for bit in iter:)once(&proof.slot_is_empty)
.chain(proof.nodes.iter().map(|node| &node.node_type))
.chain(proof.key_frag.iter().map(|frag| &frag.is_odd))

Zellic 17 Axiom

.chain(vec![proof.leaf.node_type])
{

self.gate().assert_bit(ctx, *bit);
}

Remediation

This issue has been acknowledged by Axiom, and a fix was implemented in commit
3ff70a54.

Zellic 18 Axiom

https://github.com/axiom-crypto/axiom-eth-working/pull/95/commits/3ff70a5416bc7f3993c00a51218d636b861c3b1e

3.5 No leading zero check in rlp(idx) leads to soundness bug
in transaction circuit

• Target: src/transaction/mod.rs
• Category: Coding Mistakes
• Likelihood: High

• Severity: Critical
• Impact: Critical

Description

The transaction trie maps rlp(transaction_index) to the rlp(transaction) or TxType
| rlp(transaction), depending on whether the transaction is a legacy transaction or
not. One of the goals of the transaction circuit is to validate whether transaction_ind
ex exists in the trie or not.

To do so, the circuit validates that the key_bytes of the MPTProof<F> structure is equal
to the RLP-encoded transaction_index. This is done as follows — first, the key_byt
es is RLP decoded. Then, the decoded bytes are evaluated as an integer. Then, the
evaluated value is constrained to be equal to the transaction_index.

pub fn parse_transaction_proof_phase0(
&self,
ctx: &mut Context<F>,
input: EthTransactionInputAssigned<F>,

) -> EthTransactionWitness<F> {
/) ...))
/) check key is rlp(idx):
/) given rlp(idx), parse idx as var len bytes
let idx_witness = self.rlp().decompose_rlp_field_phase0(

ctx,
proof.key_bytes.clone(),
TRANSACTION_IDX_MAX_LEN,

);
/) evaluate idx to number
let tx_idx =

evaluate_byte_array(ctx, self.gate(), &idx_witness.field_cells,
idx_witness.field_len);
/) check idx equals provided transaction_index from input
ctx.constrain_equal(&tx_idx, &transaction_index);
/) ...))

}

Zellic 19 Axiom

Here, the TRANSACTION_IDX_MAX_LEN is set to 2. This may cause an issue, as there is no
check that the RLP-decoded bytes have no leading zeros. In the case where transac
tion_index = 4, the actual transaction is stored in the key rlp(0x04). However, one
can set the key_bytes as rlp(0x0004) and it would still satisfy all the constraints.

The issue is that there would not be any value corresponding to the key rlp(0x0004
), so even when there is actually a transaction with index 4, it would be possible to
prove that there is no such a transaction.

A similar issue is also present in the receipt circuit.

Impact

This can be used create a fake proof that a block has an incorrect number of transac-
tions. Suppose that there are actually 20 transactions in a block. One can prove that a
transaction with index 4 exists in the block as usual, then prove that a transaction with
index 5 does not exist in the block using the vulnerability we describe above. This is
sufficient to prove that there are only five transactions in the block.

Recommendations

We recommend adding a padding check to the RLP decomposition.

Remediation

This issue has been acknowledged by Axiom, and a fix was implemented in commit
f3b1130e.

Zellic 20 Axiom

https://github.com/axiom-crypto/axiom-eth-working/pull/181/commits/f3b1130e58dd1a05cedb59cf445f589f7a609514

3.6 Underconstrained circuit in length proofs for transaction
circuit

• Target: src/transaction/mod.rs
• Category: Coding Mistakes
• Likelihood: High

• Severity: Critical
• Impact: Critical

Description

The transaction circuit (which we analyze further in section 4.2) aims to validate
whether a transaction index exists in the transaction trie as well as what transaction
corresponds to the index. It can also provide a proof for the number of transactions
in a certain block. For this, the list of checks is as follows.

• Checks if the transaction root is KECCAK_RLP_EMPTY_STRING and sets is_empty to
be true if this is the case

• Checks if either noninclusion_idx - inclusion_idx = 1 or noninclusion_idx =
0

• Shows that either the inclusion proof (len_proof[0]) for the inclusion_idx is a
proper inclusion proof or is_empty is true

• Shows that the noninclusion proof (len_proof[1]) for the noninclusion_idx is a
proper noninclusion proof

For example, in the case where inclusion_idx = 4 and noninclusion_idx = 5, one
proves that index 4 exists yet index 5 does not, showing that there are exactly five
transactions, corresponding to indexes 0, 1, 2, 3, and 4.

However, this list of checks is insufficient, as in the case where is_empty is true, one
can set inclusion_idx as whatever value and set noninclusion_idx as inclusion_idx
+ 1. This is caused by missing the check that is_empty being true must force nonincl
usion_idx = 0.

Impact

One can prove that there are many transactions for a block that actually has no trans-
actions.

Recommendations

We recommend adding the check that is_empty being true implies that noninclusio
n_idx = 0.

Zellic 21 Axiom

Remediation

This issue has been acknowledged by Axiom, and a fix was implemented in commit
6296e361.

Zellic 22 Axiom

https://github.com/axiom-crypto/axiom-eth-working/pull/182/commits/6296e3613185ad3540388e5b5d3908e66e34bacc

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Analysis of the storage circuit

We summarize the constraints in the storage circuit.

The circuit has the block hash, block number, and address as well as the slot-value
pairs as the public instances, and it checks that all MPT proofs (account proofs and
storage proofs) are MPT inclusion proofs.

Looking into src/storage/mod.rs, we can summarize the constraints on each function
as follows.

parse_account_proof_phase0

• hashes the address via keccak_fixed_len and constrains that it is equal to the
key_bytes of the MPTProof<F>. It RLP decomposes the value retrieved from the
state trie via decompose_rlp_array_phase0, then runs the MPT inclusion proof via
parse_mpt_inclusion_phase0.

parse_account_proof_phase1

• finishes the RLP decomposition and the MPT inclusion proof via according
phase1 functions and computes the RlcTrace<F> of each entry (nonce, balance,
storage root, code hash).

parse_storage_proof_phase0

• hashes the slot via keccak_fixed_len and constrains that it is equal to the key_by
tes of the MPTProof<F>. It RLP decomposes the value retrieved from the storage
trie via decompose_rlp_field_phase0, then runs the MPT inclusion proof via pars
e_mpt_inclusion_phase0.

parse_storage_proof_phase1

• finishes the RLP decomposition and the MPT inclusion proof via according
phase1 functions, then computes the RlcTrace<F> of the value.

parse_eip1186_proofs_phase0

• runs parse_account_proof_phase0 and all parse_storage_proof_phase0s — and
constrains that the root_hash_bytes for all storage proofs are equal to the stora

Zellic 23 Axiom

ge_root from the account trace.

parse_eip1186_proofs_phase1

• runs parse_account_proof_phase1 and parse_storage_proofs_phase1.

parse_eip1186_proofs_from_block_phase0

• decomposes the block header with decompose_block_header_phase0;

• from the block header, fetches state_root, block_hash, and block_number;

• loads the address as well as the slots and the proofs;

• runs parse_eip1186_proofs_phase0 ;

• constrains that the account proof’s root_hash_bytes matches the state_root;
and

• loads the slot-value pairs into hi-lo form and collects them.

parse_eip1186_proofs_from_block_phase1

• runs decompose_block_header_phase1, and

• runs parse_eip1186_proofs_phase1.

Overall, the circuits constrain that

• all MPT proofs are inclusion proofs,

• all RLP decompositions are done correctly,

• the key for the MPT proof is the hashed address / hashed slot,

• account proof’s root is the state root from the block header, and

• storage proof’s root is the storage root from the state trie.

4.2 Analysis of the transaction circuit

We summarize the constraints in the transaction circuit.

Looking into src/transaction/mod.rs, we can summarize the constraints on each func-
tion as follows.

parse_transaction_proof_phase0

• checks that the key_bytes of the MPT proof RLP decomposes into a byte array

Zellic 24 Axiom

that evaluates to the transaction_index;

• checks that MPT inclusion proof is correct;

• computes the maximum field length based on the maximum data length, max-
imum access list length, and the enabled transaction types;

• asserts that if every type is disabled, the MPT proof is a noninclusion proof;

• checks whether type is nonzero by comparing the first value byte against 128.
By multiplying type_is_not_zerowith the first value byte, one can compute the
tx_type accordingly;

• by replacing tx_typewith tx_type * slot_is_full - slot_is_empty, forces tx_
type = -1when slot_is_empty is true (noninclusion proof)

• based on type_is_not_zero, selects the ith byte of the actual transaction;

• if slot_is_empty, replaces the transaction bytes with 0xc100 = rlp(0x00); and

• RLP decomposes the transaction bytes as an array.

parse_transaction_proof_phase1

• in phase1, finishes the RLP decomposition of the MPT key bytes;

• in phase1, finishes the MPT inclusion/exclusion proof; and

• in phase1, finishes the RLP decomposition of the transaction bytes.

parse_transaction_proofs_from_block_phase0

• decomposes the block header to get the transaction root;

• checks the transaction MPT proof’s root_hash_bytes is the transaction root;

• checks if the transaction root is KECCAK_RLP_EMPTY_STRING and sets is_empty to
be true if this is the case;

• checks if either noninclusion_idx - inclusion_idx = 1 or noninclusion_idx =
0;

• shows that the inclusion proof (len_proof[0]) is a proper inclusion proof or is_
empty is true (this is weak, as shown in Finding);

• shows that the noninclusion proof (len_proof[1]) is a noninclusion proof; and

• checks that all length proofs’ transaction proof is correct and that their MPT

Zellic 25 Axiom

proof’s root_hash_bytes is the transaction root.

parse_transaction_proofs_from_block_phase1

• runs block header decomposition in phase1, and

• runs the transaction proof parsing in phase1.

parse_transaction_proof_from_block_phase0

• runs block header decomposition in phase0 to get the transaction root,

• parses the transaction proof in phase0, and

• checks that the transaction root is the MPT proof’s root_hash_bytes.

parse_transaction_proof_from_block_phase1

• runs block header decomposition in phase1, and

• runs the transaction proof parsing in phase1.

extract_field

• checks that the proof is an inclusion proof, and

• selects each field byte and the length with an indicator.

4.3 Analysis of the receipt circuit

We summarize the constraints in the receipt circuit.

Looking into src/receipt/mod.rs, we can summarize the constraints on each function
as follows.

parse_receipt_proof_phase0

• checks that the key_bytes of the MPT proof RLP decomposes into a byte array
that evaluates to the transaction_index;

• checks that the MPT inclusion proof is correct;

• checks whether type is nonzero by comparing the first value byte against 128.
By multiplying type_is_not_zerowith the first value byte, one can compute the
tx_type accordingly;

• by replacing tx_typewith tx_type * slot_is_full - slot_is_empty, forces tx_
type = -1when slot_is_empty is true (noninclusion proof);

Zellic 26 Axiom

• based on type_is_not_zero, selects the ith byte of the actual receipt;

• if slot_is_empty, replaces the receipt bytes with 0xc100 = rlp(0x00); and

• RLP decomposes the receipt bytes, then RLP decomposes the log array.

parse_receipt_proof_phase1

• in phase1, finishes the RLP decomposition of the MPT key bytes;

• in phase1, finishes the MPT inclusion/exclusion proof; and

• in phase1, finishes the RLP decomposition of the receipt bytes and the log array.

extract_receipt_field

• selects each field byte and the length with an indicator.

extract_receipt_log

• selects each log byte and the length with an indicator.

4.4 Analysis of the Solidity circuit

We summarize the constraints in the Solidity circuit.

Looking into src/solidity/mod.rs, we can summarize the constraints on each function
as follows.

slot_for_mapping_value_key

• concats the key and the mapping_slot (both SafeBytes32<F>) and applies kecca
k_fixed_len.

slot_for_mapping_nonvalue_key_phase0

• concats the key and the mapping_slot directlywithout constraining it and applies
keccak_var_len.

slot_for_mapping_nonvalue_key_phase1

• proves that the keccak hashed byte array is the key with the mapping_slot by
standard RLC techniques.

slot_for_mapping_key_phase0

• depending on the type of the key, delegates the logic to slot_for_mapping_valu
e_key or slot_for_mapping_nonvalue_key_phase0.

Zellic 27 Axiom

slot_for_mapping_key_phase1

• depending on the type of the key, delegates the logic to nothing or slot_for_ma
pping_nonvalue_key_phase1.

slot_for_nested_mapping_phase0

• iteratively computes the nested slot with slot_for_mapping_key_phase0, and

• with an indicator, selects the appropriate nested slot.

slot_for_nested_mapping_phase1

• runs slot_for_mapping_key_phase1 for each nested slot.

verify_mapping_storage_phase0

• computes the nested slot with slot_for_nested_mapping_phase0, and

• parses the storage proof with parse_storage_proof_phase0.

verify_mapping_storage_phase1

• runs slot_for_nested_mapping_phase1, and

• finishes the storage proof with parse_storage_proof_phase1.

4.5 Analysis of the block header circuit

We summarize the constraints in the block header circuit.

The circuit has

• the previous block hash,

• the end block hash,

• block numbers (start/end numbers concat), and

• Merkle mountain range peaks

as the public instance. The circuit checks that

• block headers are decomposed appropriately,

• num_blocks <) 2^max_depth,

• the boundary data (from the public instances) are computed correctly, and

Zellic 28 Axiom

• the Merkle mountain range is computed correctly according to the number of
blocks.

Looking into src/block_header/mod.rs, we can summarize the constraints on each
function as follows.

get_number_fixed

• left pads the number to four bytes into FixLenBytes<F, 4>.

get_number_value

• evaluates the number byte array into an AssignedValue<F>.

decompose_block_header_phase0

• range checks that all block header elements are bytes,

• RLP decomposes the block header in phase0, and

• runs keccak_var_len on the RLP array to compute the block hash.

decompose_block_header_phase1

• RLP decomposes the block header in phase1, and

• computes the RlpFieldTrace<F> for each block header entry.

decompose_block_header_chain_phase0

• parallelizes instances of decompose_block_header_phase0.

decompose_block_header_chain_phase1

• runs parallel instances of decompose_block_header_phase1, and

• checks that the block headers form a chain (i.e., that the next block’s parent_hash
matches the current block’s block hash).

get_boundary_block_data

• fetches the prev_block_hash by hi-lo decomposition of the first parent_hash_by
tes,

• fetches end_block_hash by selecting block_hash.hi_lo()s with the indicator,

• fetches start_block_number_bytes via get_number_fixed on the first block,

• fetches end_block_number_bytes by selecting get_number().field_cells and the
get_number().field_lenwith the indicator,

Zellic 29 Axiom

• computes the block_numbers by concatenating the two fixed bytearrays and
evaluating into a single AssignedValue<F>,

4.6 Analysis of the SSZ circuit

We summarize the constraints in the SSZ circuit.

Looking into src/ssz/mod.rs and src/ssz/types.rs, we can summarize the constraints
on each function as follows.

SszBasicType<F>

new

• range checks each value according to the int_bit_size.

new_from_unassigned_vec

• loads raw bytes as witnesses and calls new.

new_from_int

• computes the little endian byte representation and calls new_from_unassigned_v
ec.

SszBasicTypeVector<F>

new

• asserts that each value’s int_bit_size is consistent.

new_from_bytes

• calls SszBasicType:)new and pushes each value.

new_from_unassigned_vecs

• calls SszBasicType:)new_from_unassigned_vecs and pushes each value .

new_from_ints

• calls SszBasicType:)new_from_ints and pushes each value.

SszBasicTypeList<F>

new

• checks that len <) values.len(),

Zellic 30 Axiom

• asserts that int_bit_sizes are consistent, and

• checks that values[len.)] is all zeros; this is done by maintaining a suffix sum
of an indicator and asserting that if the suffix sum is zero, then the value must
be zero as well.

new_mask

• checks that len <) values.len(),

• asserts that int_bit_sizes are consistent, and

• multiplies the previously mentioned suffix sum to the value directly, forcing the
value to be zero when the suffix sum is zero.

new_from_unassigned_vecs

• simply asserts without constraining that len <) vals.len(),

• simply asserts without constraining that vals[len.)] is all zeros, and

• is not used in actual circuits.

new_from_ints

• simply asserts without constraining that len <) vals.len(),

• simply asserts without constraining that vals[len.)] is all zeroes, and

• is only used in the test circuits.

Inclusion proofs

verify_inclusion_proof

• checks depth !) 0 and depth <) max_depth,

• checks directions are boolean,

• verifies the Merkle proof with the direction values, and

• checks that the final Merkle root is equal to the root_bytes.

verify_field_hash

• checks field_num < max_fields,

• checks depth >) log_max_fields, and

Zellic 31 Axiom

• matches the bit representation of field_numwith the direction bits.

verify_struct_inclusion

• runs verify_inclusion_proof, and

• checks that the struct’s hash_root is equal to the witness value.

verify_struct_field_inclusion

• runs verify_field_hash, and

• checks that the struct’s hash_root is equal to the witness value.

4.7 Analysis of the MPT circuit

The MPT circuit is responsible for MPT inclusion and exclusion proofs. We summarize
the constraints in the MPT circuit.

Looking into src/mpt/mod.rs, we can summarize the constraints on each function as
follows.

parse_mpt_inclusion_phase0

• range checks all inputs,

• parse nodes RLP using decompose_rlp_array_phase0, and

• checks key fragment and prefix consistency.

parse_mpt_inclusion_phase1

• checks RLP consistency via RLC concatenation;

• constrains that for all extension nodes, the key fragment corresponds to the
corresponding fragment in key_frags. If slot_is_empty is true, the same check
is performed for all nodes except the terminal node. In this case, it is constrained
that if the terminal node is extension, the node’s fragment must not equal the
last key fragment in key_frags;

• constrains that key fragments concatenate to key;

• constrains that value_bytesmatches the value read from the leaf node; and

• constrains the Merkle hash chain.

Zellic 32 Axiom

4.8 Analysis of the RLP circuit

We summarize the constraints in the RLP circuit.

Looking into src/rlp/mod.rs, we can summarize the constraints on each function as
follows.

decompose_rlp_field_phase0

• range checks the prefix byte,

• constrains len_len to the prefix, and

• witnesses the field cells (without constraining).

decompose_rlp_array_phase0

• range checks the prefix byte;

• constrains len_len to the prefix;

• assumes a fixed number of elements and iterates through;

• if is_variable_len is true, constrains the prefix of each element in the array to
be less than the len parsed from prefix; and

• witnesses the field cells for all elements in the array (without constraining).

decompose_rlp_field_phase1

• computes RLC of the length cells and field cells, and

• constrains the concatenation of len cells and field cells to be equal to the field
RLP.

decompose_rlp_array_phase1

• computes the RLC of the length cells and field cells, and

• constrains the concatenation of the RLP of all field cells to be equal to the RLP
of the complete array.

4.9 Analysis of the RLC circuit

We summarize the constraints in the RLC circuit.

Looking into src/rlc/mod.rs, we can summarize the constraints on each function as

Zellic 33 Axiom

follows.

compute_rlc_with_min_len

• Given an input vector (val_1, val_2, val_3...))val_n), it computes and assigns
witnesses to the RLC values.

• The ctx_rlc.advice looks like | rlc0=val0 | val1 | rlc1 | val2 | rlc2 | ...))
| rlc_{max_len - 1} |.

• Final RLC index is constrained to be zero if the input length is zero, length - 1
otherwise.

• It indexes into the calculated RLC advice row using the final RLC index to com-
pute RLC.

4.10 Analysis of the keccak circuit

Axiom uses a standalone keccak coprocessor circuit for keccak computations. The
coprocessor circuit was not part of this audit’s scope, but the keccak module defines
the KeccakManager chip, which is essentially used to communicate with and manage
the coprocessor circuit.

Essentially, the keccak module performs the following functions:

• It computes and assigns witnesses (without constraining) for keccak outputs.

• The input/output pairs used are passed to the KeccakManager.

• In the second phase, KeccakManager constructs a dynamic lookup table of all
requests it received. Each row in the lookup table represents the 3-tuple (rlc_
encoding(input_assigned), output_hi, output_lo).

• The KeccakManager performs a lookup for all input/output pairs and outputs a
commitment to the table as a public instance.

• The validity of the table is ensured by comparing the table commitment gener-
ated by KeccakManagerwith that output by the keccak coprocessor circuit.

KeccakChip<F>

keccak_var_len

• range checks len,

• inserts the corresponding request into manager.state,

Zellic 34 Axiom

• loads the hi-lo bytes of the output unconstrained (to be constrained through
lookup by the manager in SecondPhase), and

• inserts the keccak query to manager.var_len_queries.

keccak_fixed_len

• inserts the corresponding request into manager.state,

• loads the hi-lo bytes of the output unconstrained (to be constrained through
lookup by the manager in SecondPhase), and

• inserts the keccak query to manager.var_len_queries.

KeccakManager<F>

generate_witnesses_phase0_end

• is called at the end of the first phase — manager.statemust be AcceptingReques
ts;

• initializes Poseidon spec (expensive but only done once in the lifetime of a cir-
cuit);

• encodes every request in manager.state (constrained) amd outputs a commit-
ment to be matched with the coprocessor output;

• takes the resulting output commitment and assigns it as an instance; and

• transitions manager.state to CoprocessorEncoded.

raw_synthesize_phase0_end

• is called at the end of the first phase — manager.statemust be CoprocessorEnco
ded, and

• assigns encoding.loaded_keccak_fs.hash_hi and encoding.loaded_keccak_fs.h
ash_lo to hash output columns of the dynamic lookup table.

generate_witnesses_phase1_start

• is called at the beginning of SecondPhase witness generation — manager.state
must be CoprocessorEncoded, and

• transitions manager.state to Finalized.

Zellic 35 Axiom

5 Audit Results

At the time of our audit, the audited code was not deployed to mainnet.

During our assessment on the scoped Axiom circuits, we discovered six findings. Two
critical issues were found. Two were of high impact, one was of medium impact, and
the remaining finding was informational in nature. Axiom acknowledged all findings
and implemented fixes.

5.1 Disclaimer

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic and KALOS, of course, also cannot make guaran-
tees about any code added to the project after the audit version of our assessment.
Furthermore, because a single assessment can never be considered comprehensive,
we always recommend multiple independent assessments paired with a bug bounty
program.

For each finding, we provide a recommended solution. All code samples in these
recommendations are intended to convey how an issue may be resolved (i.e., the
idea), but they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic or KALOS.

Zellic 36 Axiom

	About Zellic
	About KALOS
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Axiom
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	The verify_field_hash function has incorrect Merkle proof–verification logic
	Insufficient maximum depth for the MPT proofs leads to a potential DOS attack
	Function new_from_bytes in src/ssz/types.rs is incorrect
	The node type of terminal node in MPT is not range checked to be a bit
	No leading zero check in rlp(idx) leads to soundness bug in transaction circuit
	Underconstrained circuit in length proofs for transaction circuit

	Discussion
	Analysis of the storage circuit
	Analysis of the transaction circuit
	Analysis of the receipt circuit
	Analysis of the Solidity circuit
	Analysis of the block header circuit
	Analysis of the SSZ circuit
	Analysis of the MPT circuit
	Analysis of the RLP circuit
	Analysis of the RLC circuit
	Analysis of the keccak circuit

	Audit Results
	Disclaimer

